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Abstract

The chemical composition of a variety of agricultural biomass samples was analyzed with near infrared spectroscopy and
pyrolysis molecular beam mass spectroscopy. These samples were selected from a wide array of agricultural residue samples
and included residues that had been subjected to a variety of di2erent treatments including solvent extractions and chemical
modi�cations. This analysis showed that both spectroscopic tools, coupled with multivariate analytical techniques, could be
used to di2erentiate the samples and accurately predict the chemical composition of this disparate set of agricultural biomass
samples.
? 2004 Elsevier Ltd. All rights reserved.

Keywords: Rapid chemical analysis; Near infrared spectroscopy; Pyrolysis-molecular beam mass spectrometry

1. Introduction

Understanding the chemical composition of
biomass is a key feature in determining potential uses
for, and the value of, a speci�c biomass resource.
The chemical composition and material properties
of biomass can be dramatically changed by extrac-
tion with aqueous reagents or organic solvents, or by
chemical modi�cation. Traditionally, chemical analy-
ses of the individual components (e.g., sugars, lignin)
of lignocellulosics have been performed by acid
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hydrolysis followed by gravimetric determination of
lignin and chromatographic determination of sugars
[1–4]. These methods can provide highly precise data,
but because they are laborious, time-consuming, and,
consequently, expensive to perform, sample through-
put is limited. Thus, there is a great deal of interest in
developing analytical tools that can be used to rapidly,
inexpensively measure the chemical composition of
biomass.

There are many di2erences in structure, and phys-
ical and chemical properties between wood and other
agricultural resources, including di2erences in �ber
length and width, and cell wall architecture. The major
physical di2erences are water sorption, free volume,
permeability, and strength. Chemically, they di2er in
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lignin, cellulose, and hemicellulose content as well
as the actual chemical structure and make up of both
the lignin and the hemicelluloses. Many of the plants
contain large quantities of proteins that are sometimes
mistaken for lignin in analysis. Plants also may con-
tain large quantities of starch that can be mistaken
for cellulose while most woods contain very little if
any starch. The extractive type and content also vary
widely between plants and wood. Finally, the inor-
ganic content can be quite variable in both woods and
plants. Because of these di2erences, it is diFcult to
use one set of analytical tools to analyze all types of
agricultural resources.

A variety of spectroscopy tools have been used to
measure the chemical composition of wood and other
forms of biomass. In one early study, Schultz and
coworkers [5] used di2use reGectance infrared spec-
troscopy (DRIFT) to determine the glucose, lignin
and xylose content of wood. They suggested this tech-
nique could be used to accurately predict the chemical
composition of wood. Since the advent of commer-
cially available packages capable of performing MVA
techniques on complex spectral data sets, several re-
searchers have used DRIFT and transmission Fourier
transform infrared spectroscopy (FTIR) techniques to
quantitatively analyze wood composition [6,7]. In one
recent study, DRIFT and FTIR were used to measure
the complete chemical composition, e.g., lignin, glu-
cose, xylose, mannose, galactose, arabinose and ex-
tractives, of a series of Pinus radiata samples [6].
Both spectroscopic techniques produced high quality
predictions of the chemical composition of the wood
samples, and due to the ease of sample preparation,
DRIFT was recommended as the preferred method.
This work also compared the merits of using di2er-
ent projection to latent structures (PLS) techniques
that can be used to correlate chemical composition
measured by traditional techniques with the spectral
data. A similar study [7] also showed that transmis-
sion FTIR could be used to accurately predict the car-
bohydrate composition of Eucalyptus globulus. This
work was based on the use of pre-selected wavelengths
that were known to be related to the carbohydrates of
interest. Both univariate and MVA techniques were
used to predict the carbohydrate content, and both
methods produced high quality predictions. Predic-
tion of the chemical composition of wood with FTIR
may be viewed as the “bench-mark standard” against

which any new rapid analysis technique should be
compared.

While FTIR is capable of providing accurate pre-
dictions of the chemical composition of wood, it has
some signi�cant drawbacks in terms of sample prepa-
ration. Even with a relatively rapid technique such as
DRIFT, the samples must be ground to a homoge-
neous powder and sampling conditions are critical. In
contrast, near infrared (NIR) spectroscopy can be used
to collect spectra rapidly on a wide variety of samples.
One paper highlights DRIFT as a rapid technique at
8–10 samples/h [6] while more than one hundred
samples/h may be processed by NIR. NIR spec-
troscopy has one additional signi�cant advantage;
since it is a non-contact measurement it can be used
for process control applications [8,9]. The initial ap-
plications of NIR to forestry and the forest products
industry focused on forest health and analyzing nitro-
gen, cellulose and lignin content of fresh and dried
leaves and needles [10–15]. Taken together, these
studies showed that the correlations between NIR and
nitrogen content were very strong, r ¿ 0:95, while the
correlations between NIR spectra and the cellulose,
starch or lignin content were generally very good,
r ¿ 0:90. McLellan and coworkers [13] concluded
that there were greater errors for interlaboratory anal-
ysis of foliage samples using traditional wet chem-
istry, e.g., extraction/digestion and chromatography
than for NIR analysis.

A number of groups have shown the value of using
NIR for predicting properties of interest to the pulp
and paper industry [16–29]. Their work showed that
NIR could be used to predict pulp yield [17–21], the
properties of paper [22,23], or the kappa number of
pulps [25]. Several reports also have demonstrated the
value of using NIR for directly measuring the chem-
ical composition of wood and biomass [9,26–29]. In
several of these studies the complete chemical com-
position of wood, e.g., lignin, glucose, xylose, man-
nose, galactose, arabinose and extractives, was mea-
sured with NIR.

Analytical pyrolysis techniques have been used to
measure the chemical composition of many types of
biomass and isolated biomass components. Early work
by Evans and Milne showed that pyrolysis molecu-
lar beam mass spectrometry (py-MBMS) could be
used to characterize the complex suite of reaction
products produced from pyrolysis of wood and its
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individual components [30,31]. This work is very
useful since it provides mass spectral assignments
for many of the individual fragments produced in
this complex fast pyrolysis environment. The sy-
ringyl/guaiacyl ratio of lignin from di2erent fami-
lies of E. globulus has been studied in detail using
pyrolysis gas chromatography mass spectroscopy
(py-GC-MS) [32,33]. This study was able to dis-
tinguish trees with di2erent types of lignins and the
technique was recommended for screening Eucalyp-
tus lines for pulp production.

A similar study showed that py-GC-MS could be
used to study the structure of lignin [34]. Speci�-
cally this work focused on the role of cinnamyl al-
cohol end-groups in lignins isolated from di2erent
sources. The chemical composition of pine needles has
been studied with py-GC-MS [35]. This work showed
that both carbohydrate and lignin fragments could be
identi�ed using this technique. To increase the util-
ity of py-GC-MS, a number of authors also have cre-
ated derivatives in situ by conducting the pyrolysis
in the presence of tetramethylammonium hydroxide
or similar reagents [36–39]. This approach increases
the volatility of many of the pyrolysis fragments, and
can be used to distinguish between hydroxyl and acid
groups that were present in the original samples and
those that were formed during the pyrolysis process.
However, none of this work demonstrated the use of
pyrolysis mass spectroscopy techniques to measure the
chemical composition of biomass.

The goal of this study was to test the e2ectiveness
of NIR and py-MBMS for measuring the chemical
composition of biomass that has been subjected to a
wide variety of extractions and chemical treatments.
The focus of this work is to demonstrate that these
tools could be used to measure the chemical compo-
sition of a wide variety of agricultural residues, and
not to optimize either the wet chemical analysis or
the rapid analysis models. Additional work on the wet
chemistry and rapid analysis should allow for the pro-
duction of high quality, predictive models.

2. Experimental

The protocols for wet chemical analysis are based
on methods developed for woody materials that are
not optimized for �bers or agricultural residues. The

variance in the wet chemistry is small, less than 1%
for all components, but many components of these
samples, acetyl groups, uronic acids, protein, are
not completely captured by these analysis protocols.
Samples subjected to solvent extraction or chemical
modi�cation are particularly problematic for the gen-
eral wet chemical analysis. Thus, the mass closure for
many of the samples is well below the normal range of
98–102%. But since the analyses are reproducible
these results can still be used to demonstrate the
potential for using these rapid analysis tools on a
wide variety of �bers and agricultural residues.

2.1. Biomass samples

The biomass samples were obtained by the US
Forest Products Laboratory from a wide variety of
sources. They were air-dried and used as received.
The biomass samples are listed in Table 1. The dif-
ferent treatments used to modify the samples are also
listed in Table 1.

2.2. Chemical analysis by reference method

Samples were milled until they passed through a
1.00-mm screen and vacuum dried at 45◦C. Primary
hydrolysis of 80–120 mg subsamples was performed
with 1:00 ml 72% (w/w) H2SO4 for 1 h at 30◦C. Hy-
drolysates were diluted to 4% (w/w) H2SO4 with dis-
tilled water, fucose added as an internal standard, and
a secondary hydrolysis performed for 1 h at 120◦C.
Following secondary hydrolysis, samples were imme-
diately �ltered through tared Gooch porcelain cru-
cibles containing Whatmanr 934-AH glass �ber �l-
ters. Residues were extensively washed with hot wa-
ter, dried, and measured gravimetrically. Residue ash
contents were determined gravimetrically following
combustion and deducted from total residue masses to
yield Klason lignin contents.

Sugar contents of hydrolysates were determined
by high pH anion exchange chromatography with
pulsed amperometric detection (HPAEC/PAD) [40].
The chromatographic system consisted of an AS50
autosampler, a GS50 quaternary gradient high pres-
sure pump, and an ED50 pulsed amperometric de-
tector (Dionex Corporation, Sunnyvale, CA). Sugar
separation was achieved with Carbo-Pac PA1 guard
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Table 1
Sample types, treatments, and chemical compositions. (Lig—Klason Lignin, Glu—Glucan, Xyl—Xylan, Mann—Mannan, Arab—Abrabinan,
Galac—Galactan, Rham—Rhaninan and Clos—Total Mass Closure.)

Biomass source Scienti�c name Treatment Lig Glu Xyl Mann Arab Galac Rham Clos

Abaca Musa textilis None 8.0 62.5 12.1 0.3 1.1 0.7 0.1 84.9

Agava Agave tequilana None 9.3 47.4 15.1 0.3 0.3 0.6 0.2 73.4

Babacu Orbignya phalerata None 32.8 29.9 20.9 0.4 0.9 0.5 0.2 86.3

Banana Musa species None 18.5 44.6 11.1 0.6 2.2 0.7 0.2 82.9

Coconut Coir Cocos nucifera None 33.8 31.5 15.9 0.2 1.3 0.6 0.2 83.9
Coconut Coir Cocos nucifera None 27.2 41.8 6.1 10.5 1.1 1.9 0.6 88.8
Coconut Coir Cocos nucifera Hot Water 26.7 44.3 6.3 10.4 0.9 1.6 0.1 90.3
Coconut Coir Cocos nucifera EtOH 25.5 43.7 6.1 11.2 1.0 1.9 0.1 89.5
Coconut Coir Cocos nucifera Ether 26.5 42.4 6.1 10.8 1.1 1.8 0.2 88.9
Coconut Coir Cocos nucifera 1% NaOH 27.4 49.9 6.3 8.3 1.0 1.2 0.1 94.2
Coconut Coir Cocos nucifera HNO3 20.7 48.8 5.0 9.8 0.1 1.2 0.1 85.7
Coconut Coir Cocos nucifera HNO3 26.9 22.0 14.8 0.1 0 0.2 0.1 64.1
Coconut Coir Cocos nucifera ECH 31.4 24.1 9.1 0.1 0.2 0.4 0 65.3

Cotton Gossypium spp. ECH 0.2 69.7 0.3 0 0 0.1 0 70.3

Curaua Ananas lucidus None 7.5 66.4 11.6 0.1 0.5 0.5 0 86.7

Flax Linum usitatissimum None 6.9 64.3 1.8 4.9 0.6 3.4 0.6 82.7

Hemp Cannabis sativa None 5.4 70.2 1.1 5.4 0.5 1.9 0.6 85.3

Kenaf bast Hibiscus cannabinus Hot Water 10.8 51.9 12.4 1.1 1.2 0.9 0.5 78.8
Kenaf bast Hibiscus cannabinus 1% NaOH 11.9 52.9 1.4 1.3 1.0 0.9 0.4 69.8
Kenaf bast Hibiscus cannabinus HNO3 4.0 62.2 10.3 1.7 0 0.6 0.2 79.0
Kenaf bast Hibiscus cannabinus ECH 7.5 32.7 6.5 0.5 0.3 1.0 0.1 48.6
Kenaf bast Hibiscus cannabinus Phenol 11.2 49.3 11.5 1.2 1.4 1.1 0.5 76.2
Kenaf bast Hibiscus cannabinus Pyridine 9.0 42.3 9.8 1.2 1.5 1.0 0.5 65.3

Kenaf core Hibiscus cannabinus None 21.0 39.2 17.7 1.3 0.3 0.6 0.4 80.5
Kenaf core Hibiscus cannabinus Hot Water 35.2 40.0 19.2 1.2 0.2 0.5 0.4 96.7
Kenaf core Hibiscus cannabinus EtOH 19.9 35.0 18.3 1.2 0.3 0.6 0.4 75.7
Kenaf core Hibiscus cannabinus Ether 20.7 39.4 17.9 1.2 0.3 0.6 0.4 80.5
Kenaf core Hibiscus cannabinus 1% NaOH 21.5 51.2 16.5 0.4 0.2 0.4 0.1 90.3
Kenaf core Hibiscus cannabinus ECH 13.7 19.4 6.3 0.3 0.1 0.3 0.1 40.2
Kenaf core Hibiscus cannabinus Phenol 20.9 40.2 18.8 1.2 0.2 0.5 0.4 82.2
Kenaf core Hibiscus cannabinus Pyridine 20.0 39.5 18 1.3 0.2 0.6 0.4 80.0

Loofa Lu:a None 15.2 52.6 15.3 0.2 0.3 0.4 0.2 84.3

Palm Palmae spp. None 18.1 38.5 23.4 0.5 1.3 0.7 0.2 84.1
Sisal Agave sisalana None 6.5 60.5 15.6 0.1 0.2 0.4 0.1 83.7

Sugar cane Saccharum o;cinanum None 18.6 41.9 22.5 0.1 1.2 0.5 0.1 84.9
Sugar cane Saccharum o;cinanum Hot Water 18.9 44.3 24.3 0.1 1.8 0.5 0.1 90.0
Sugar cane Saccharum o;cinanum EtOH 18.5 44.0 24.1 0.1 1.9 0.5 0.1 89.2
Sugar cane Saccharum o;cinanum Ether 18.5 42.5 22.5 0.1 1.8 0.5 0.1 86.0
Sugar cane Saccharum o;cinanum 1% NaOH 6.3 59.7 25.7 0 2.3 0.3 0 94.3
Sugar cane Saccharum o;cinanum HNO3 14.8 53.2 17.1 0.1 0.5 0.3 0 86.0
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and analytical columns (Dionex) connected in series.
Sugars were eluted with distilled H2O at a Gow rate
of 1:0 ml=min and a temperature of 18◦C. For de-
tection, 300 mM NaOH was added as a post-column
reagent at a Gow rate of ca. 0:3 ml=min. Prior to each
injection, the anion exchange columns were condi-
tioned with 240 mM NaC2H3O2 in 400 mM NaOH,
and then equilibrated with distilled H2O. The ongo-
ing inter-batch precision of the method is tracked by
analysis of a quality assurance (QA) sample with each
analytical batch. The data used herein were derived
from 34 analyses of subsamples of a QA sample of
loblolly pine (Pinus taeda, L).

2.3. Near infrared analysis

The visible/NIR spectra (500–2400 nm) were ac-
quired with an Analytical Spectral Devices FieldSpec
FR Spectrometer. The samples were illuminated with
a DC light source and the reGected NIR signal was col-
lected with a �ber optic probe. The samples were held
in a 2:5 cm diameter cup. Thirty individual scans were
averaged for each reGectance spectra (0:1 s/spectrum)
and two spectra were taken from each sample. The re-
Gectance spectra were converted to absorbance spec-
tra and subjected to MVA. Due to limitations on the
amount of sample (less than one gram) only 23 of the
samples were analyzed with NIR.

2.4. Pyrolysis molecular beam mass spectrometry

The py-MBMS analyses were conducted using
a pyrolysis furnace coupled to a free-jet molecular
beam mass spectrometer (MBMS). Ground samples
(20–30 mg) were pyrolyzed in the furnace that was
preheated to 550◦C. The molecular fragments are
swept out of the furnace into the MBMS with an argon
gas stream. The gas stream is expanded in a series of
three vacuum chambers to quench most intermolecu-
lar collisions. A low-energy electron beam (23 eV)
in the triple quadrupole mass spectrometer produces a
positive ion mass spectrum. The MBMS experiment
is described in detail elsewhere [30,31]. All 41 of the
samples were analyzed in duplicate, except for the
1% NaOH extracted kenaf core, and the 2 N nitric
acid treated kenaf core and kenaf bast where there
was not enough sample for duplicate analysis. The
duplicate spectra were evaluated for reproducibility

and then averaged to give one py-MBMS spectrum
for each sample. The single spectra of samples from
the 1% NaOH extracted kenaf core, and the 2 N
nitric acid treated kenaf core and kenaf bast were
used directly.

2.5. Multivariate analysis (MVA)

While a complete description of MVA can be
found elsewhere [41,42] the following summary de-
scribes the steps used to construct PLS models in this
work. MVA was performed using The Unscrambler
J version 7.6 (CAMO, Corvallis, OR) [43]. The
package has the capability to perform both principal
component analysis (PCA) and projection to latent
structures (PLS) (also known as partial least squares)
analyses. The NIR or py-MBMS spectra for all of
the samples are combined into a single data matrix
(X -matrix), while the chemical composition mea-
sured by HPAEC/PAD are combined into a response
matrix (Y -matrix). The PCA software is used to
systematically extract (decompose) variation in the
data matrix (X -matrix) while principal component
regression is used to regress each response variable
(Y -matrix) onto the decomposed spectra (X -matrix),
and make a projection to latent structures.

The UnscramblerJ can be used for PLS-2 analy-
sis where all of the Y -variables, e.g., concentrations
all six individual sugars and lignin, are projected into
the X -matrix (NIR or py-MBMS spectral intensities).
Both the X - and Y -matrices were mean centered vari-
ance normalized prior to performing the PLS anal-
ysis. The number of principal components (factors)
used for a model was selected by observing the re-
sponse of the residual Y -variance with added fac-
tors. When additional factors did not substantially de-
crease the residual Y -variance, the model was com-
pleted. All of the PLS models were cross-validated.
Cross-validation systematically removes a single sam-
ple from the data set, constructs a model with the
remaining samples and uses that model to predict
the value(s) of the Y -variable(s) for the extracted
sample. This process continues until each individ-
ual sample has been removed from the data set and
a fully cross-validated model is constructed [41,42].
All of the results reported here are based on PLS-2
analysis.
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3. Results

3.1. Sample properties

This set of biomass samples is very diverse in
terms of the original source of the biomass, the sec-
ondary treatments applied to the samples, and thus the
chemical composition of the samples varies widely.
The source of the biomass, the type of treatment and
the chemical composition of the samples are listed
in Table 1. Sample sources include a very pure �ber
(e.g., cotton), perennial crops (e.g., sugar cane, Gax,
sisal, and hemp), and tropical monocotyledons (e.g.,
palm and banana). Samples from sugar cane bagasse,
kenaf core, kenaf bast, and coconut coir were sub-
jected to a series of secondary treatments also listed in
Table 1. These treatments included relatively mild ex-
tractions such as hot water, diethyl ether and ethanol,
and more severe extractions such as NaOH, phenol
and pyridine, and chemical modi�cations such as
nitric acid and epichlorohydrin. The chemical modi-
�cations represent some of the treatments that might
be used for modifying the �bers prior to incorporat-
ing them into composites. Samples from this diverse
series of biomass sources and secondary treatments
provided a wide range of chemical compositions
(Table 1).

The quality of the PLS models is heavily depen-
dent on the accuracy and precision of the method used
to generate reference values. Any errors in reference
values used for the calibration will directly reduce the
quality of the PLS model and increase the standard de-
viation of values predicted with the PLS model. Pre-
cise and reliable results have been obtained for the
agricultural lignocellulosic kenaf [4], although the an-
alytical precision for these types of highly modi�ed
agricultural �ber samples is not well established.

Of note are the lower mass closure values for these
non-wood samples. The closure values obtained for
these components in wood range from 85% to 98%
[40]. The range for non-treated samples examined in
the present study is 73–89%. It is unlikely that the
HPAEC/PAD method underestimates sugar compo-
nents, as the carbohydrate polymers of agricultural
materials are more amenable to acid hydrolysis than
are their more crystalline counterparts in wood. The
expected bias of Klason lignin values is not helpful
in explaining this lower mass closure, as they are ex-

pected to be overestimated by use of the reference
method with agricultural samples due to condensation
of the relatively high concentrations of protein typi-
cally found in these types of samples. These low mass
closure values for the non-treated biomass samples are
likely due to higher levels relative to woody biomass
of protein, oils, uronic acid, acetyl groups, and acid
soluble lignin.

The mass closure for some of the samples sub-
jected to the chemical treatments with nitric acid or
epichlorohydrin was below 60%. These treatments re-
sult in chemical modi�cations of sample constituents.
The lack of mass closure therefore does not imply
a failing on the part of the analytical methods, but
rather simply that the desired chemical modi�cation
has occurred. The constituent sugars of sample carbo-
hydrates are no longer measured as sugars because in
fact they no longer are sugars.

3.2. PCA for classi?cation of samples

The results of PCA of the py-MBMS analysis of
the set of 41 samples are shown in Fig. 1. PCA groups
the samples based on their similarities and di2erences,
and provides information on the mass spectral features
(loadings) that are the basis of the chemical similar-
ities and di2erences [41,42]. For example, PCA al-
lows one to distinguish samples that have been sub-
jected to a chemical treatment from “normal” samples
or samples with a high concentration of one compo-
nent from samples with a low concentration of that
component.

Fig. 1a shows a plot of principal component (PC)1
and PC2. These two PCs contain 81% of the mass
spectral variation, 69% for PC1 and 12% for PC2.
These principal components are comprised of highly
correlated mass fragments that are indicative of chemi-
cal di2erences between samples. There are several dis-
tinct groups of samples highlighted in Fig. 1a. There
is one group of samples that is strongly positive along
PC1. This group contains all the samples that were
subjected to nitric acid treatment. The untreated Cu-
rava sample also is included in this group. A second
set of samples is positive along PC2. These are the
samples that were treated with epichlorohydrin. As
one might expect, these two relatively harsh chemi-
cal treatments resulted in signi�cant changes in the
chemical composition of the samples. There is a third
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Fig. 1. Results of the principal component analysis of py-MBMS
data for all on the agricultural �ber samples: (a) PC1 vs. PC2 and
(b) PC2 vs. PC4.

group of samples that is slightly negative along PC1.
This third set includes samples that were extracted
with phenol, and a number of untreated samples.

The chemical features that distinguish the nitric acid
treated samples from the remainder of the samples are
related to high concentrations of carbohydrate frag-
ments, e.g., masses 57, 60, 73, 97 and 144 [29]. The
epichlorohydrin treated samples have very high mass
spectral intensity at masses 58 and 86. These masses
have been assigned to carbohydrate degradation prod-
ucts [29] that may be formed during the reaction with
epichlorohydrin. The third set of samples that was
slightly negative along PC1 is rich in masses 137,
154, 168, 180, and 210. All of these fragments are re-
lated to syringyl lignin moieties. The samples in this

set include untreated coconut, palm, kenaf, and Gax
samples, and kenaf treated in di2erent ways. Syringyl
lignin is common to angiosperms but also has been
found in annual plants such as Gax [44].

Fig. 1b shows results from the same PCA projected
along PC2 and PC4. Again the samples treated with
epichlorohydrin are positive along PC2. But a sec-
ond group of samples can be distinguished along PC4,
which accounts for 4% of the mass spectral variation.
These samples are all from one biomass source, co-
conut coir. The only coconut coir samples that are not
contained in this group are the two samples that were
treated with nitric acid. The mass spectral features that
distinguish the coconut coir samples are masses 138,
154, 164 and 272. These fragments have been assigned
to guaiacyl lignin fragments [30], suggesting that rela-
tive to any of the other biomass samples, coconut coir
is de�cient in monomethoxy aromatics.

3.3. PLS analysis for predicting chemical
composition

Both the py-MBMS and NIR spectral data were
used to predict the chemical composition of the sam-
ples using a PLS-2 analysis. This type of analysis
simultaneously predicts a number of the individual
chemical components present in the sample. In this
case, the lignin content and six individual sugars,
glucose, xylose, mannose, galactose, arabinose and
rhamnose, were all predicted simultaneously. The
results of these predictions are shown in Tables 2 and
3, for the NIR and py-MBMS sample sets, respec-
tively. The PLS-2 models were constructed with full
cross validation techniques, which allows us simulta-
neously to evaluate the calibration model and predict
unknown samples [41,42].

Table 2 shows the results for the 23 samples sub-
jected to analysis with NIR spectroscopy. Given the
limited number of samples available for NIR analy-
sis, the correlation coeFcient (r) for the calibration
model of the major components (lignin, glucose and
xylose), is very high. The correlations between the
measured and predicted concentration of the major
biomass components are shown in Fig. 2. The correla-
tions (r CALB) between the measured and predicted
concentrations of lignin, glucose, and xylose are all
above 0.85 (Table 2). The r CALB value for the mea-
sured and predicted concentrations of mannose is 0.80.
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Table 2
Summary of the PLS-2 predictions of chemical composition from NIR spectra using 6 principal components

Lignin Glucose Xylose Mannose Galactose Arabinose Rhamnose

r (CALB) 0.88 0.94 0.87 0.80 0.84 0.87 0.72
r (VALD) 0.71 0.87 0.71 0.44 0.52 0.57 0.36
RMSEC 4.00 3.60 3.50 2.60 0.40 0.30 0.10
RMSEP 6.10 5.20 5.80 4.50 0.70 0.50 0.20

Table 3
Summary of the PLS-2 predictions of chemical composition from py-MBMS using 6 principal components

Lignin Glucose Xylose Mannose Galactose Arabinose Rhamnose

r (CALB) 0.85 0.85 0.87 0.92 0.83 0.70 0.80
r (VALD) 0.77 0.75 0.81 0.86 0.65 0.54 0.71
RMSEC 4.60 6.20 3.40 1.40 0.40 0.50 0.10
RMSEP 5.50 8.00 4.10 1.80 0.50 0.60 0.10
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Fig. 2. Plot of the measured weight percent Glucose, Lignin and
Xylose and Weight Percent Predicted from the NIR Data.

The r CALB -values for the minor components, e.g.,
galactose, arabinose and rhamnose, also are shown in
Table 3, and as expected they are lower than those of
the three major components. The lower r CALB val-
ues for these minor components are expected since
these sugars are, on average, present in concentrations
of less than 1 wt%.

The root mean square error of calibration (RMSEC)
and root mean square error of prediction (RMSEP) are
measures of the accuracy of the models in the units

used for the original model. The RMSEP is similar to
the standard deviation of the prediction. The RMSEP
for the major components, lignin, glucose, xylose and
mannose are 6.1, 5.2, 5.8 and 4.5 percent, respectively.
These values are greater than the standard deviations
obtained with the reference method but still allow for
detection of di2erences between the samples. These
RMSEP values also are higher than those obtained for
a homogeneous set of pine samples [29], reGecting
the heterogeneous nature of these agricultural �bers.
However, these results suggest that NIR can be used
to rapidly rank and compare samples based on com-
position of their major components. The NIR method
is not suitable for evaluation of the minor components
for this highly varied set of samples, although minor
sugars have been accurately predicted for more homo-
geneous sets of samples [9,27–29].

The accuracy of the NIR predictions as a function of
the measured concentration of the major components
is shown in Fig. 3. The results in Fig. 3 show that
the accuracy of the NIR predictions increase as the
concentration of the component of interest increases.
The accuracy of the NIR predictions at low xylose
concentrations, below 10%, is poor, but the accuracy
for all components improves above 10% concentration
of that component.

A total of 41 samples were analyzed with
py-MBMS. The results of this analysis are shown in



S.S. Kelley et al. / Biomass and Bioenergy 27 (2004) 77–88 85

Percentage of Component (wt%)

10 20 30 40 50 60 70 80

D
if

fe
re

n
ce

 b
et

w
ee

n
 M

ea
su

re
d

 
an

d
 P

re
d

ic
te

d
 C

o
m

p
o

si
ti

o
n

 (
w

t%
) 

-20

-10

0

10

20
Lignin
Glucose
Xylose
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Fig. 4. Plot of the measured weight percent Glucose, Lignin and
Xylose and Weight Percent predicted from the py-MBMS data.

Table 3. As seen with the NIR analysis, there is a
good correlation between the measured and predicted
composition for the four major components, lignin,
glucose, xylose and mannose. Fig. 4 shows the cor-
relation between the measured and predicted lignin,
glucose, and xylose contents for the py-MBMS pre-
dictions. The correlations for the major components
are promising with r CALB values above 0.85. Again,
the r CALB values for the three minor sugars that
are, on average, present at concentration below 1%
are relatively low. Nevertheless, considering that the
correlations are based on di2erences in the fragmen-

tation patterns for sugars with very similar chemical
structures, these correlations are promising. The RM-
SEC and RMSEP are comparable to those seen with
the NIR sample set, with a slight decrease for glucose
and a slight increase for mannose.

4. Discussion

Results from the PLS models produced from the
NIR and py-MBMS spectra are essentially the same.
This is somewhat surprising considering the distinct
di2erences in the experiments. In the py-MBMS ex-
periment the individual sugar isomers that make up
the polysaccharides are broken into a complex suite
of fragments [30,31]. The PLS models are based
on correlations between the relative composition of
these fragments and the concentration of the indi-
vidual sugar present in the original biomass sample.
Most of these fragments do not resemble the orig-
inal sugar and it is not obvious how di2erences in
their fragments would allow us to distinguish isomers
such as glucose, mannose and galactose, although
the results presented in Table 3 show that it is pos-
sible to distinguish these hexose isomers. The lignin
macromolecule also is fragmented by the py-MBMS
experiment, although many of these fragments closely
resemble the compounds we would expect to �nd in
lignin, e.g. phenol, mono and dimethoxylated phe-
nols, and alkylated phenols [30]. Thus it is more
intuitive that the concentration of methyl guaiacol, for
example, might be correlated with the concentration
of lignin in a sample.

In the NIR experiments, subtle di2erences in the
structure of the di2erent sugars and lignin cause subtle
changes in hydroxyl and C–H vibrations. In the NIR
experiment these sugars and lignin are intact and the
relative intensity of distinct, albeit highly overlapped,
vibrations are directly related to the concentration of
the sugars and lignin. Even with these substantial dif-
ferences in the physical phenomena underlying the
spectral measurement, both the NIR and py-MBMS
spectra can be used to accurately predict the concen-
tration of lignin and six individual sugars.

In terms of the quality of the correlations, there does
not seem to be an advantage of one technique rela-
tive to the other. In practical terms, the NIR is much
faster (more than one hundred samples/h) and easier
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to run, but the py-MBMS experiment requires very
small sample sizes (as little as 5 mg), which could
be a distinct advantage if one were investigating very
small samples such as individual growth rings or �ne
roots. By way of comparison, traditional wet chemi-
cal methods (extraction, acid hydrolysis, and Klason
lignin and sugars analysis) require a sample size of
only approximately 100 mg, but the complete analysis
takes several days.

The speed of NIR and py-MBMS could give it
an analytical advantage over the much more precise,
but labor-intensive reference method. Because of the
limited throughput of traditional wet chemical meth-
ods, adequate replication of experimental samples is
sometimes not possible. As a result, natural variation
within a sample set could introduce substantial error
into determination of the mean compositional value of
the set. A more intensive sampling regime combined
with NIR or py-MBMS analysis could be very useful
in measuring the natural variation within a biomass
sample.

Great care must be taken when comparing results
from di2erent studies. Many variables such as the
spectral range [9], preprocessing of the data (e.g.,
second derivatives [27] or orthogonal signal correc-
tion [24]), and the number of principal components
[41,42] used for the models will all have a signi�cant
impact on the correlations. Recognizing these issues,
we have tried to put our results into context with the
prior work. The correlations reported here are gen-
erally slightly poorer than those reported from other
studies that predict the complete chemical composition
of biomass with NIR [9,27–29]. This is not surpris-
ing given the very heterogeneous nature of this set of
samples. In addition, it should be noted that non-wood
tissues are compositionally more complex than wood,
as is reGected by the relatively poor mass closure in
the present study. If only the 14 untreated samples
are analyzed, then the correlations for both the NIR
and py-MBMS models (not shown) improve slightly.
However, the correlations presented in all of the NIR
studies are not as strong as those derived with either
DRIFT or transmission FTIR. This is reasonable since
the FTIR spectra contains information on the funda-
mental vibrations and has more separation between
similar signals, e.g., hydroxyls for carbohydrate iso-
mers. The NIR spectra are limited to the overtones of
these fundamental vibrations.

Correlations from both NIR and py-MBMS are
promising given the tremendous diversity of the
biomass samples. The PCA of the py-MBMS results
shown in Figs. 1a and b demonstrated that there
were distinct di2erences between samples subjected
to di2erent chemical treatments and samples from
di2erent sources. Even with these distinct di2erences,
one PLS-2 model can be used to predict the chemical
composition of this very diverse array of samples.
These PLS numbers can distinguish samples with low,
medium and high concentrations of lignin, glucose
and xylose.

5. Conclusions

The chemical composition of a very diverse ar-
ray of biomass samples was predicted from NIR and
py-MBMS spectra using PLS modeling. The e2ects of
di2erent chemical treatments could be detected with
py-MBMS. Good correlations between the measured
and predicted concentrations of the three major com-
ponents, lignin, glucose and xylose could be obtained
with both spectroscopic techniques. The correlations
between the four minor sugars, mannose, galactose,
arabinose and rhamnose, were weaker but promis-
ing. Improvements in the protocols used for obtain-
ing the wet chemistry, along with more samples from
a speci�c feedstock of interest should allow for the
construction of high quality predictive models for all
biomass components.
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